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In this paper we investigate different representations of an arbitrary function in
terms of two-body Coulomb eigenfunctions. We discuss the standard energy
basis in spherical and parabolic coordinates with the purpose of remarking
explicitly that two additional parameters appear both in the Schrodinger
equation and in the wavefunctions: the charge and the angular momentum. We
introduce the charge and generalized angular momentum Sturmian function

ABSTRACT: In this work we introduce a method to construct Sturmian functions for
general interaction potentials in two-body problems. We expand these Sturmians on a
finite L% space, using N Laguerre basis functions to obtain a discrete set of eigenvalues for
positive and negative energies. Orthogonality and closure relations are thus rewritten for
these expansions; completeness is achieved through increasing the basis size. We apply the
method to the Coulomb and Herman and Skillman potential. We study the behavior of the

Contents

representations, which result when the charge or the angular momentum is
used as the eigenvalue in the Coulomb Schrodinger equation, respectively.
We present the connection between the generalized angular momentum
representation and the Kontorovich-Lebedev transform. Finally, we extend
the angular momentum representation to six dimensions, which is suitable for

further applications in the three-body Coulomb problem. Pollaczek polynomials

PACS number: 03.65.—w

functions obtained and their convergence for an overall range of energies. The Sturmian
functions are applied to solve the Schrédinger equation for an active electron in a He-like
system. © 2006 Wiley Periodicals, Inc. Int ] Quantum Chem 107: 832-844, 2007

Key words: Sturmian functions; Coulomb potential; Coulomb screened potential;

1. Introduction

1. Introduction I he theoretical study of a wide range of atomic
and molecular properties can be carried out

through the representation of a particular physical
magnitude by a functional basis set. Such functions
are usually generated by solving the Schrodinger
equation for the problem under study, or an approx-

1. Introduction

[

2.1 Definitions
2.2 Bound states

Generalized Sturmian functions

2.3 Scattering states

&9

3.1 Systems with
3.2 Two-¢electron

The standard way of theoretically studying the properties of a wide variety of atomic and imated problem similar to the one of interest. The 4
molecular systems is by using functional basis set for representing the physical magnitudes : : : 8 .
involved in the phenomena under analysis. According to the mathematical structure of Correspondence to: A. L. Frapiccini; e-mail: afrapic@uns.edu.ar eigenfunctions obtained are those associated to the 4.1 Introduction
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quantum mechanics, each physical magnitude has a Hermitian operator associated and then its
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eigenfunctions become the natural basis set to be used. The most common basis set uses the
energy eigenfunctions, i.e., the eigenfunctions of the Hamiltonian. However, in some cases the

5 . A N N (Argentina).
energy eigenfunctions are not the most convenient ones and alternative basis sets are necessary. g
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energy eigenvalues. However, in some cases, these
functions are not suitable to a given problem and
other basis sets are necessary or more convenient,
e.g., for convergency reasons. As an alternative to
energy eigenfunctions one could find solution$ to
the same wave equation treating the energy as a fixed

International Journal of Quantum Chemistry, Vol 107, 832—844 (2007)
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this paper the double fonization of helium by high-energy electron impact is studied. The corresponding
four-body Schrédinger equation is transformed into a set of driven equations containing successive orders in

the projectile-target interaction. The transition amplitude obtained from the asymptotic limit of the first

-order

The first-order ion is solved

solution is shown to b
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momentum transfer o publi

ical coordinates, yield mutual agreem
iplitude is extracted, and single differential cross sections are c:
benchmark values to test other numerical methods in a previously unexplored ener

The study of electron-impact double ionization of atoms o
allows one to learn about correlated systems. The most detailed
information is obtained through a kinematically complete
(e.3¢) experiment, in which the three outgoing particles are
detected in coincidence and a fivefold differential cross section
(FDCS) is deduced. At high impact energy, the only available
absolute experimental (e,3¢) data for helium have been pub-
Buenos Aires, Argentina lished by the Orsay group [1,2]. The coplanar measurements
é ectile of 5600 eV, two

different sts of ejected electrons energies (4+4 eV and

1010 eV), and a small scattering angle corresponding to
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is that several ab initio methods provide
in FDCS shapes and magnitudes (see
a teview in Ref. [3]). The main aim of this paper is not to

From our ab initio solution,
ited and could be taken as
domain.
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approximation—is defined as [4]

77(2-;)‘@\7 I 1)
A0d0ndRdEdE, ) & T

in terms of the transition matrix
4n
Tpi= ?(W/ |W[W). (03]

Here q = k; — k; is the momentum transferred to the target
[projectile with initial (k) and final (k) momenta], and W
contains the Fourier transform of the interaction between the
projectile and the three target particles. Only three-body wave
functions are required in (2): Wy representing the helium
ground state, and a double continuum W describing the
movement of the two ejected electrons (momenta k and k3)
in the presence of the residual target ion.

Various methods have been developed in the past decades
to describe both types of three-body states. The description of
the double continuum is by far the most difficult both from

rather to provid

forthese (he

explicitly includes continuum asymptotic boupdary.qeaditiansnaadyiisbuitiespugenaraizedons are solutions of one—electr(ﬁig%ﬁ{ﬁiﬁgﬁ Sjfempeaglma cross setions which.
10] other ab imitio metl

ods will reproduce. If agreement

Sturmian functions. These functions are eigempreblefissofvadivahbadyeprollein whenagdhieude of a short-range potential. Also, thy.gfw?ﬁy{lnghﬁ lngoFangemplificd ¢—-He S-wave (e, 3¢)

as well as the numerical point of view, the
main difficulty being the imposition of appropriate asymptotic
behaviors. Ab initio methods like the R matrix [5]. J matrix
[6.7], convergent close coupling [8], and exterior complex
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the simyj@illt case of helium targets, is still an open problem
in atomic physics [1]. Even the most sophisticated ab initio
theories are unable to describe absolute experimental data
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Sturmians Functions (CSF) with an expansion in a set of L? basis functions. In the

two-body case, we recover the exact (discrete) spectrum of the CSFs for negative energies
and a discretized approximation for positive ones. Besides, we make use of this method to

analyze the two-independent electron problem as a Generalized Sturmian problem. We
propose a discretized version of the wave function in terms of the CSF states, and show

that the problem reduces to find numerical coincidences between energy-dependent

eigencharges of the mutually independent one-electron systems. This expansion

methodology includes the continuum information which is lost in the sets used previously
in the literature, and is Cnmplete ‘when the size of the basis goes to infinity. © 2008 Wiley
Periodicals, Inc. Int ] Quantum Chem 109: 125-134, 2009
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We present a computation method to accelerate the calculation of the Hamiltonian of a three-body time
independent Schrodinger equation for collisions. The Hamiltonian is constructed with one dimensional
(basis overlaps) and two dimensional (interparticle interaction) integrals that are mapped into a
computational grid in a Graphics Processing Unit (GPU). We illustrate the method for the case of an
electron impact single ionization of a two electron atom. This proposal makes use of a Generalized
Sturmian Basis set for each electron, which are obtained numerically on a quadrature grid that is used
to compute the integrals in the GPU. The optimal computation is more than twenty times faster in the
GPU than the calculation in CPU. The method can be easily scaled to computers with several Graphics
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states of the total angular momentum operator L?, Processing Units or clusters.
where the positions of the electrons are determined by
the spherical coordinates which locate the electrons
relative to the nucleus. By means of such expan-
sion, one arrives to a two-dimensional equation in

Spectral methods
Sturmian functions
GPU computing

© 2014 Elsevier B.V. All rights reserved.

the radial electronic coordinates, whose solution is
approximated as a superposition of two-electron
configurations. Other methods in which the basis
expands the behavior of the wave function in all the
interparticle distances are more rapidly convergent
(see [1,2] and references therein), but generally the
calculation is very time consuming, and the algebra
is too much complicated to be extended from two to
many-electron atoms, compared to the case of the CI
scheme.

1. Getting started

The properties of atoms and molecules can be determined by
their wave function, which is obtained as the solution of the
Schrédinger equation for non-relativistic energies. There are many
methods to solve this second order, partial differential equation,
from simple approximations that can give a hint of the physics, to
the complete ab-initio numerical solution to predict physical quan-
tities with a high degree of precision. When the wave function of

183
A {eneral Method

Interactions
196

Fuggtions for Continuum and Bound
Stakte Problems With Coulomb

an atomic or molecular system is written in a basis expansion, the
Schrodinger equation transforms into a linear problem described
by a dense matrix [1]. To obtain this matrix, it is necessary to com-
pute integrals between two elements of the basis (called overlaps)
and integrals of the interparticle potentials, that usually involve
four basis functions.

The details of the calculation of each element of this matrix
(called the Hamiltonian matrix) greatly depend on two factors.
First, the system of coordinates chosen to represent the positions
of the particles and their interactions, and second, the election of
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the basis set for each particle. These choices are determined not
only by the number or type of particles involved, but also for the
kind of experiment and/or physical property under investigation.

For example, the simpler meth akes use of Slater Type Orbitals
(exponentials times powers of e electronic coordinates relative

wave function is expanded in terms of three-body Hamiltonian
cigenfunctions obtained trough a £? diagonalization. The
external one is represented in terms of Coulomb Sturmian

without the need for a resdallpg s DR A M CI emidigioWoligimee i asymptotic behavior. The coefficients

Ty
important in the high- regime, WHELe_experimenta
absolute fivefold differei%sbﬁ@iéﬂ&é&éih%é/
for example, Lahmam-Bennani et al. and Taouil ez al. [2,3].

In the past two decades computer performance has seen
great progress, which enabled physicists to develop more and
more sophisticated numerical approaches to solve problems
with a greater degree of accuracy. Examples of these methods
are the time independent methods, such as the exterior complex
scaling (ECS) [4], the convergent close coupling (CCC) [5,6],
and J matrix [7-9], among others.

Part of the complexity of three-body Coulomb problems lies
in the fact that asymptotic conditions are difficult to include
in the models, and each method approaches this problem in a
different way.

The ECS methodology takes advantage of a rotation of the
radial coordinates to the complex plane. This allows us to
include the correct asymptotic behavior without enforcing it
formally.

The CCC scheme distinguishes each of the ejected elec-
trons. One electron is represented in terms of basis states
obtained from an £ di ization of the target Hamiltoni

AT AGT BRI 10 1130 aoloing olineycpiem.of
‘€quations. FRus, thé explicit form of the asymptotic conditions
is used.

Time-dependent models, such as the time-dependent close
coupling [11,12], the time-dependent exterior complex scaling
(TDECS) [13] or a wave-packet evolution [14], use completely
different types of asymptotic conditions and avoid the difficul-
ties of the time-independent methods.

One of the aims of this contribution is to show that
the generalized Sturmian functions (GSFs) theory impose
the desired asymptotic behavior, for any (single or double)
fonization channel. This is done by imposing outgoing
behavior on each of the radial coordinates of two sets of
spherical coordinates, one for each ejected electron. Within
the GSF method, outgoing asymptotic conditions are explicitly
enforced on each coordinate, which in turn enforces the correct
three-body behavior.

Let us now recall the history of the GSF method. The
group begun implementing GSF with the work of Frapiccini
et al. [15], where the main aspects of the methodology were

which includes pseudostates for the continuum part of the
spectrum. The other one is described by continuum Coulomb
wave functions. The three-body wave function is not computed
explicitly, but the T-matrix elements are obtained instead.
Three-body outgoing behavior is set by using the Green
operator in a simplified Lippmann-Schwinger equation for the
T matrix. Thus, the asymptotic behavior is explicitly enforced
in this methodology.

The J-matrix model takes a similar path to CCC [8-10].

magnitude of a potential is assumed as the dury. €onrdip Guathombippitmtolyable choose to expand the Sturmians of "i#fe! ogfprﬁ?g{sbikg\mdgwgm can start exploring more  caling [9] have been very successful in describing the single s Outgoing-type behavior is explicitly enforced for one of the
) R A ASR——— % -y v ) ; deeply (e reasons beyondhe ibove-mentioned disagreements  jonization of atoms by clectron impact. For the simplest s s 760 (@) VBT
analytical model demonstrates that our approdk picttyped R ithgle-excited states energies for He andilhe rdMpisnyer, we are o (o et 5 o U O Ao, cosiy omputer Physics Communications =

basis sizes much smaller than other previous cileubnelvain desfinvinadyidthsudfdostlofited states of He, using a Sturmian basis (Wifﬁ)’Wﬂgbﬁﬁé‘mmﬁf L
o

e R .. L process on helium requires the solution of a pure

ionization by electron impact in the L = 0 appfofitieaioh stlgass. it ahee evipeeieancether CI calculations, for similar basis Siggrbody Coulomb problem. However, a reduction to a
three-body problem can be performed in the case of high-

PACS numberf3y:e3 PUS:ae: 31 hgequged in the Orsay experiment.
‘or two electrons escaping with energies E> and Es in the

solid angles d2; and d<2s, the FDCS—within the first Bomn

properties also apply to long-range Coulomb ]brgil)l%iﬁ 03/PhysRevA 82.042503

(Some figures in this article are in colour only in the electronic version)
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good agreement has been found not only between several ab
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[16,17] contain a good summary on
the mathematical properties of Sturmian basis sets.

The group has also presented some applications to two-
[16,18] and three-body bound-state problems [17,19,20].
Sturmian functions for bound states have been shown to
be very efficient, and one can obtain highly accurate free
[17,19,20] and confined [21] helium eigenvalues among many
other systems [22].

Continuum GSFs have also been implemented to solve
three-body scattering problems in Refs. [23,24]. In all these
examples, the GSF method has proven to be efficient and
accurate. For a complete review see Ref. [22].

The aim of the present contribution is to analyze the
information contained in the wave function of an S-wave

initio methods but afso in their comparison with the available
experimental data. T} 3 sfictoty:picture suggests that
all the methods pro¥}
double continuum of;
least they numericall,

the exact solution nﬁé PEpb
it can be stated thaf the thre
been solved numerically
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wave function to defcribe (d.38) /prdcedsés within the first
Born approximation. When comparing the results provided by
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and .

Yu. Ovchinnikov [28,29]. They defined numerical
strategies to solve the Sturmian equation for general potentials.
We extended these works, introducing a systematic way to
generate Sturmians for any physically sound potential with
different types of boundary conditions [30-32].

of two-electron bound states can be performed in different
ways. For example, one can explicitly include the dependence
in the interelectronic coordinate, using relative interparticle
coordinates [12,14—17] or perimetric ones [18]. However,
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all the basis elements. The short-range generating potential rules the dynamics of the inner region. The
energy is considered a fixed parameter, while the eigenvalues are the generalized charges. Although the

trix system, it cannot be solved by standard

computational linear algebra packages. Therefore, we developed computational routines to calculate the
basis with high accuracy and low computational time. The precise charge eigenvalues with more than 12
significant figures along with the corresponding wave functions can be computed on a single processor
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energy. The first one involves the expansion of the radial wave function in a L? finite basis
set, whereas the second one introduces the discretization of the radial coordinate domain
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atomic systems, but not to analyze problems where particles can be
spread out through the space, like ionization processes. Quantum
chemistry calculations usually employ Gaussian functions to
obtain properties of molecules, and take great advantage from the
fact the systems under scrutiny are bound states [3-5].

Unlike these calculations of the quantum chemistry arena, colli-
sional problems deal with particles that can be far from each other.
In fact, the most important feature of a collision, the cross sections,
are defined in those regions, assuming that the interactions among
the particles are no longer effective and that they are far away from
where the collision took place [6]. Therefore, the basis in collision
problems should be able to accurately expand the full wave func-
tion for large interparticle distances. Moreover, if charged parti-
cles are present, the basis should take into account the long-range
asymptotic behavior of Coulomb fields [7,8]. Finally, possibly the
main shortcoming is that it is not possible to use simple analytic
basis sets for collision problems. All these factors pose several chal-
lenges to perform a numerically accurate calculation of wave func-
tions and cross sections in atomic and molecular collisions [9].

In the last few years, the computer hardware and software
have been moving fast to an heterogeneous world [10]. In the
desktop market, this meant going from a simple one-core desktop
computer to an aggregate of one to several multicore CPUs with
their corresponding accelerators. This also replicates in High
Performance Computing clusters, such as the Titan supercomputer
at Oak Ridge National Laboratory [11]. Nowadays it is not possible
to program a scientific code thinking only about the pure speed
of the calculation (i.e., floating points operations per second). In-
core and out-of-core communication layers, memory hierarchies,
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Abstract

Two particle Sturmian functions [M. Rotenberg, Ann. Phys., NY 19 (1962) 262; S.V. Khristenko, Theor. Math. Fiz. 22 (1975) 31 (Engl. Transl.

Theor. Math. Phys. 22, 21)] for a short range potentials are obtained by expanding the solution of the Schrodinger equation in a finite Z>Laguerre-

Received: 1 November 2013 / Accepted: 15 January 2014

type basis. These functions are chosen to satisfy certain boundary conditions, such as regularity at the origin and the correct asymptotic behavior
according to the energy domain: exponential decay for negative energy and outgoing (incoming or standing wave) for positive energy. The set

of eigenvalues obtained is discrete for both positive and negative energies. This Sturmian basis is used to solve the Schrodinger equation for
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(Received 21 June 2011; published 17 Novened 2itH hvailable absolute experimental data. In this contribution we discuss an alternative formulation which

An analytically solvable three-body collision system (s wave) model i{&ﬁ?g&%ﬁ%&[&%ﬂiﬁ

one-particle model potential [A.V. Sergeev, S. Kais, J. Quant. Chem. 75 (1999) 533] to describe the motion of a loosely bound electron in a
HRUTRAEY atom. Values of the two parameters of the potential are computed to represent the Helium isoelectronic series and the critical nuclear

allows to tackle the gmblem with a different methodology, the generalized Sturmian approach. AW Uf§cdymian functions; Critical nuclear charge; N-¢lectron atoms
${H_{hS°JSH9éigence of the calculated cross sections.

methods. The first one is a configuration interaction expansion of the scattering wave function using a basis
set of Generalized Sturmian Functions (GSF) with purely outgoing flux (CISF), introduced recently in A. L.

Frapicinni, J. M. Randazzo, G. Gasaneo, and F. D. Colavecchia [J. Phys. B: At. Mo[. Opt. Phys. 43, 101001
(2010)]. The second one is a finite element method (FEM) calculation per}omg(?
methods are employed to analyze different ways of modeling the asymp[ﬂti]cabeh:avior of the waye functio
finite computational domains. The asymptotes can be simulated very acc%ag)euf s %é:llécl)l sine hy)
rectangular contours with the FEM software. In contrast, the CISF melrmﬁnf cl?ﬁ F@Jiﬂ%fi}%’gﬂ{'eaﬁéﬂ
domain or within a confined region in space. We found that the hyperspherif@}. gﬁq&:‘@gm@%ﬁ i
the infinite domain (confined) CISF evaluation are equivalent. Finally, we applyethess medebbiai

approach of hydrogen ionization.
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1. Introduction
tio) el @
SR geils BU:h The Sturmian functions [1,2] for a two-body system are of
rec- oiiy Coulomb problem has been solved numerically, the proof beitigudavdnterest in atomic physics. These functions are solu-
FR Siivele Tonization [(e, 2e) process] of hydrogen by electron impact fidnsSef/éraltwo-body Schrodinger equation for some physical
ggllgent-Close-Coupling [2], the Exterior-Complex-Scaling [3], thpofentiadrishere the energy is fixed and the strength of the poten-
%%M@fém success to numerically approach the solution of the problemtiaAisithéelmigenvalue. Besides, they satisfy a set of boundary
thedlemkinReetame methods are applied to the double ionization of heliuncdnydjstwtoaf the physical problem to be solved. Negative energy
impact [(y, 2e) process]. Except in some minor details, it can be said that these methods agree S¢umarkablthat decay exponentially at large distances make a
well with each other, and with the experimental observations. discrete basis for negative energies, and have been widely used
PACS number(sy o3¢k 80rPRy3 théSdoitb R4 ibhixation of helium by impact of high energy electrons, the (e, 3a)apniiesphysics to determine atomic energy levels [4-6], or

cen stated that the

The three-body breakup problem is of fundamental interest
in atomic collisions theory. The simplest example, ionization
of atomic hydrogen by electron impact, is theoretically de-
scribed by the solution of the Schrodinger equation associated
with two electrons moving in the field of a heavy nuclei con-
sidered at rest. Analytical solutions are not known. However,
cross sections for various energies have been measured in the
laboratory for this process.

The main theoretical difficulties of the three-body frag-
mentation problems with Coulomb interactions are related
to the very complicated form of the six-dimensional (corre-

I INTRODUCTION

rior complex $€afife ’-‘E@)H&i&?x}?d%‘ﬁl?&ﬁé‘\%{% ta-ﬁ*ci fi

imposing the ARPITHE AR SHICHAGREHRGG:-45

e . the Orsay gry ulei -Jp addition, those nimeri

scattering wave ] d.l{lbt %;ﬁ hroug 1

the complex plie, OUEAR AN 1

dumped behavior fn th

with box boupdary, conditiens in a large square domain. Al-

though outgoipgifpuTimsbotirleNrRensEOoTdinates ik telated 167078 Metz, France e

the double coftintiinnelansivthe@btained wave function is Cor

valid in the wholg spatial domain where overlapping with other
0; . S H ”» -

channels Occﬁgmﬂ%%&ioﬁ‘&@éﬁ%%é%‘iﬂgg i\laggiia ‘géirslféﬁ?tﬂm Bahia Blanca, Buenos Aires, Argentina

fragmentation tal

and breakup cpsy segtigns are obtained with the ECS method,

although at th i ey i

the same is not observed. When dealing with high energy projectiles the four-body problem comesppankinge Coulomb Green function (see [7] and references
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?htf? satisfactorily reproduce the absolute experimentaVidatmaiile, at positive energies, Sturmian functions might be
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lated) wave function together with its asymptotic properties
[1-5]. Many separable and nonseparable models have been
introduced to obtain approximate values for the transition
amplitudes [6,7], which are solutions of the Schrodinger
equation in some asymptotic region where at least one of
the particles is far away from the other two. However, the
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Other theories such as the J-matrix approach employ

spectral techniques to deal with the three-body problem
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nikov and Macek [8] obtained a discrete set of eigenvalues for
purely outgoing wave Sturmians, however this functions became
unbounded as r increased. Rawitscher [9] was able to define a
set of Sturmians with outgoing wave condition even in the case
where a long range potential was present, showing that they
constitute a discrete basis set with discrete eigenvalues.

Following this approach, we propose a systematic method to
obtain Sturmian functions for both negative and positive ener-
gies, expanding the solution of the radial part of the Schrodinger
equation in a L2 Laguerre-fype basis set. The use of the Green’s
function ensures the asymptotic behavior in the entire energy
domain. This basis set is therefore suitable for constructing the
wave function of a given scattering problem for both long range
Coulomb potentials or short range potentials.

In Section 1 of this paper we present a brief review of the
Sturmian theory and an analysis of the different asymptotic
behavior according to the energy domain. In Section 2 we
outline the general method to expand the two-particle Sturmian
functions in terms of Laguerre-fype basis, and obtain orthog-
onality and closure relations restricted to a finite subspace.
Numerical results for a Coulomb well potential are shown for
both negative and positive energies. In Section 3 we use the
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Accepted 26 March 2014 computational grid in a Graphics Processing Unit (GPU). We illustrate the method for the case of an

electron impact single ionization of a two electron atom. This proposal makes use of a Generalized
Sturmian Basis set for each electron, which are obtained numerically on a quadrature grid that is used
to compute the integrals in the GPU. The optimal computation is more than twenty times faster in the
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Iogization GPU than the calculation in CPU. The method can be easily scaled to computers with several Graphics
Spectral methods Processing Units or clusters.
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