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Scientific computing on GPU’s

• Graphics Processing Units (GPU’s) are specialized hardware desgined to
discharge computation from the CPU for intensive graphics applications.
• They have many cores (thread processors), currently the Tesla K40

(Kepler GK110) has 2880 cores at 745 Mhz (Builtin boost to 810, 875Mhz).

• The raw computing power
is in the order of Teraflops
(4.3 Tflops in SP and
1.43 Tflops in DP).
• Memory Bandwidth

(GDDR5) 288 GB/sec.
Memory size 12 GB/sec.
• Cost USD 5,000. Low end

version Geforce GTX Titan:
USD 1000.
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Scientific computing on GPU’s (cont.)

• The difference between the GPU’s
architecture and standard
multicore processors is that GPU’s
have much more computing units
(ALU’s (Arithmetic-Logic Unit) and
SFU’s (Special Function Unit), but
few control units.
• The programming model is SIMD

(Single Instruction Multiple Data).
• GPU’s compete with many-core

processors (e.g. Intel’s Xeon Phi)
Knights-Corner, Xeon-Phi 60
cores).

if (COND) {
   BODY-TRUE;
} else {
   BODY-FALSE;
}
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Xeon Phi

• In December 2012 Intel launched the Xeon Phi coprocessor card: 3100 and
5110P. (2000 USD to 2600 USD). It has 60 cores with 22nm technology
(clock speed 1GHz approx). “Supercomputer on a card” (SOC).
• Today limitation is that(with 22nm technology) is that 5e9 transistors can

be put on a sinle chip. Today Xeon processors have typically 2.5e9
transistors.
• Xeon Phi has 60 cores equivalent to the original Pentium processor (40e6

transistors).
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Xeon Phi (cont.)

• Xeon Phi is an alien computer. It fits in a PCI Express X 16 slot, and has its
own basic Linux system. You can SSH to the card and run x86-64 code.
Another workflow is to run the code in the host and send intensive
computing tasks to the card (e.g. solving a linear system).
• On January 2013 Texas Advanced Computing Center (TACC) added Xeon

Phi’s to his Stampede supercomputer. Main CPUs are Xeon E5-2680. 128
nodes have Nvidia Kepler K20 GPUs. Estimated performance 7.6 Pflops.
Tianhe-2 (China) the current fastes supercomputer (33.86 pflops) includes
also Xeon Phi coprocessors.
• Part of Intel’s Many Integrated Core (MIC) architecture. Previous

codenames for the project: Larrabee, Knights Ferry, Knights-Corner.)
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GPU’s in HPC

• Some HPC people are skeptical
about the efficient computing
power of GPU’s for scientific
applications.
• In many works speedup is referred

to available CPU processors, which
is not consistent.
• Delivered speedup w.r.t.

mainstream x86 processors is
often much lower than expected.
• Strict data parallelism is difficult to

achieve on CFD applications.
• Unfortunately, this idea is

reinforced by the fact that GPU’s
come from the videogame special
effects industry, not with scientific
computing.
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Solution of incompressible Navier-Stokes flows on GPU

• GPU’s are less efficient for algorithms that require access to the card’s
(device) global memory. Shared memory is much faster but usually scarce

(16K per thread block in the Tesla C1060) .
• The best algorithms are those that make computations for one cell

requiring only information on that cell and their neighbors. These
algorithms are classified as cellular automata (CA).
• Lattice-Boltzmann and explicit F?M (FDM/FVM/FEM) fall in this category.
• Structured meshes require less data to exchange between cells (e.g.

neighbor indices are computed, no stored), and so, they require less
shared memory. Also, very fast solvers like FFT-based (Fast Fourier

Transform) or Geometric Multigrid are available .
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Fractional Step Method on structured grids with QUICK

Proposed by Molemaker et.al. SCA’08: 2008 ACM SIGGRAPH, Low viscosity
flow simulations for animation.

• Fractional Step Method
(a.k.a. pressure
segregation)
• u, v, w and continuity

cells are staggered
(MAC=Marker And
Cell).
• QUICK advection

scheme is used in the
predictor stage.
• Poisson system is

solved with IOP
(Iterated Orthogonal
Projection) (to be
described later), on top
of Geometric MultiGrid
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Solution of the Poisson with FFT

• Solution of the Poisson equation is, for large meshes, the more CPU
consuming time stage in Fractional-Step like Navier-Stokes solvers.
• We have to solve a linear system Ax = b
• The Discrete Fourier Transform (DFT) is an orthogonal transformation

x̂ = Ox = fft(x).
• The inverse transformation O−1 = OT is the inverse Fourier Transform

x = OT x̂ = ifft(x̂).
• If the operator matrix A is spatially invariant (i.e. the stencil is the same at

all grid points) and the b.c.’s are periodic, then it can be shown that O
diagonalizes A, i.e. OAO−1 = D.
• So in the transformed basis the system of equations is diagonal

(OAO−1) (Ox) = (Ob),

Dx̂ = b̂,
(1)

• For N = 2p the Fast Fourier Transform (FFT) is an algorithm that
computes the DFT (and its inverse) in O(N log(N)) operations.
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Solution of the Poisson with FFT (cont.)

• So the following algorithm computes the solution of the system in
O(N log(N)) ops.

. b̂ = fft(b), (transform r.h.s)

. x̂ = D−1b̂, (solve diagonal system O(N))

. x = ifft(x̂), (anti-transform to get the sol. vector)
• Total cost: 2 FFT’s, plus one element-by-element vector multiply (the

reciprocals of the values of the diagonal of D are precomputed)
• In order to precompute the diagonal values of D,
. We take any vector z and compute y = Az,
. then transform ẑ = fft(z), ŷ = fft(y),
. Djj = ŷj/ẑj .
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Solution of the Poisson equation on embedded geometries

• FFT solver and GMG are very fast but have several restrictions: invariance
of translation, periodic boundary conditions. They are not well suited for
embedded geometries.
• One approach for the solution is the IOP (Iterated Orthogonal Projection)

algorithm.
• It is based on solving iteratively the Poisson eq. on the whole domain

(fluid+solid). Solving in the whole domain is fast, because algorithms like
Geometric Multigrid or FFT can be used. Also, they are very efficient

running on GPU’s .
• However, if we solve in the whole domain, then we can’t enforce the

boundary condition (∂p/∂n) = 0 at the solid boundary which, then
means the violation of the condition of impenetrability at the solid

boundary .
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The IOP (Iterated Orthogonal Projection) method

The method is based on succesively solve for the incompressibility condition
(on the whole domain: solid+fluid), and impose the boundary condition.

on the whole
domain (fluid+solid)

violates impenetrability b.c. satisfies impenetrability b.c.
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The IOP (Iterated Orthogonal Projection) method (cont.)

• Fixed point iteration

wk+1 = ΠbdyΠdivwk.

• Projection on the space of
divergence-free velocity fields:

u′ = Πdiv(u)

{
u′ = u−∇P,

∆P = ∇ · u,

• Projection on the space of velocity
fields that satisfy the
impenetrability boundary condition

u′′ = Πbdy(u′)

{
u′′ = ubdy, in Ωbdy,

u′′ = u′, in Ωfluid.
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Implementation details on the GPU

• We use the CUFFT
library.
• Per iteration: 2 FFT’s

and Poisson residual
evaluation. The FFT on
the GPU Tesla C1060
performs at 27 Gflops,
(in double precision)
where the operations
are counted as
5N log2(N).
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FFT computing rates in GPGPU. GTX-580
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FFTW on i7-3820@3.60Ghz (Sandy Bridge)
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NSFVM Computing rates in GPGPU. Scaling
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NSFVM and “Real Time” computing

• For a 128x128x128 mesh (≈ 2Mcell), we have a computing time of
2 Mcell/(140 Mcell/sec) = 0.014 secs/time step.
• That means 70 steps/sec.
• A von Neumann stability analysis shows that the QUICK stabilization

scheme is inconditionally stable if advanced in time with Forward Euler.
• With a second order Adams-Bashfort scheme the critical CFL is 0.588.
• For NS eqs. the critical CFL has been found to be somewhat lower (≈ 0.5).
• If L = 1, u = 1, h = 1/128, ∆t = 0.5h/u = 0.004 [sec], so that we can

compute in 1 sec, 0.28 secs of simulation time. We say ST/RT=0.28.

(launch video nsfvm-bodies-all),
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NSFVM and “Real Time” computing (cont.)
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Computing times in GPGPU. Fractional Step components
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Current work

Current work is done in the following directions

• Improving performance by replacing the QUICK advection scheme by
MOC+BFECC (which could be more GPU-friendly).
• Implementing a CPU-based renormalization algorithm for free surface

(level-set) flows.
• Another important issue is improving the representation (accuracy) of the

solid body surface by using an immersed boundary technique.
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Why leave QUICK?

• One of steps of the Fractional Steps Method is the advection step. We
have to advect the velocity field and we desire a method as less diffusive
as possible, and that allows as large the CFL number as possible.
• Also, of course, we want a GPU friendly algorithm.
• Previously we used QUICK, but it has a stencil that extends more than one

cell in the upwind direction. This increases shared memory usage and
data transfer. We seek for another low dissipation scheme with a more
compact stencil.
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Quick advection scheme

1D Scalar advection diffusion: a= advection velocity, φ advected scalar.

∂

∂x
(aφ)

∣∣∣∣
i+1/2

≈ (aφQ)i+1 − (aφQ)i
∆x

,

φQi =

3/8φi+1/2
+ 6/8φi−1/2

− 1/8φi−3/2
, if a > 0,

3/8ui−1/2
+ 6/8ui+1/2

− 1/8ui+3/2
, if a < 0,

x

i+1/2 i+3/2 i+5/2i-1/2i-3/2

control volume cell

i+1i
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Method Of Characteristics (MOC)

• The Method Of Characteristics (MOC) consists in tracking the position of
the node following the characteristics to the position it had at time tn and
taking its value there,

Φ(xn+1, tn+1) = Φ(xn, tn)

If xn doesn’t happen to be a mesh node it involves a projection.
• It’s the basis of the Lagrangian methods for dealing with advection terms.
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Method Of Characteristics (MOC) (cont.)

• So typically MOC has very low diffusion if CFL is an integer number ,

and too diffusive if it is an semi-integer number .
• Of course, in the general case (non uniform meshes, non uniform velocity

field) we can’t manage to have an integer CFL number for all the nodes.
(launch video video-moc-cfl1), (launch video video-moc-cfl05).
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MOC+BFECC

• Assume we have a low order (dissipative) operator (may be SUPG, MOC,
or any other) Φt+∆t = L(Φt,u).
• The Back and Forth Error Compensation and Correction (BFECC) allows

to eliminate the dissipation error.
. Advance forward the state Φt+∆t,∗ = L(Φt,u).
. Advance backwards the state Φt,∗ = L(Φt+∆t,∗,−u).

exact w/dissipation error
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MOC+BFECC (cont.)

exact w/dissipation error

• If L introduces some dissipative error ε, then Φt,∗ 6= Φt, in fact
Φt,∗ = Φt + 2ε.
• So that we can compensate for the error:

Φt+∆t = L(Φt,∆t)− ε,

= Φt+∆t,∗ − 1/2(Φ
t,∗ − Φt)

(2)
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MOC+BFECC (cont.)

(launch video video-moc-bfecc-cfl05).
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MOC+BFECC (cont.)

Nbr of Cells QUICK-SP BFECC-SP QUICK-DP BFECC-DP

64× 64× 64 29.09 12.38 15.9 5.23

128× 128× 128 75.74 18.00 28.6 7.29

192× 192× 192 78.32 17.81 30.3 7.52

Cubic cavity. Computing rates for the whole NS solver (one step) in [Mcell/sec] obtained with the

BFECC and QUICK algorithms on a NVIDIA GTX 580. 3 Poisson iterations were used.

[jump to Conclusions]
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Analysis of performance

• Regarding the performance results shown in above, it can be seen that the
computing rate of QUICK is at most 4x faster than that of BFECC. So
BFECC is more efficient than QUICK whenever used with CFL > 2, being
the critical CFL for QUICK 0.5. The CFL used in our simulations is typically
CFL≈ 5 and, thus, at this CFL the BFECC version runs 2.5 times faster
than the QUICK version.
• The speedup of MOC+BFECC versus QUICK increases with the number of

Poisson iterations. In the limit of very large number of iters (very low
tolerance in the tolerance for Poisson) we expect a speedup 10x (equal to
the CFL ratio).
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Validation. Lid driven 3D cubic cavity

• Re=1000, mesh of 128× 128× 128 (2 Mcell). Results compared with Ku
et.al (JCP 70(42):439-462 (1987)).
• More validation and complete performance study at Costarelli et.al,

Cluster Computing (2013), DOI:10.1007/s10586-013-0329-9.
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Renormalization

Even with a high precision, low dissipative algorithm for transporting the level
set function Φ we have to renormalize Φ→ Φ′ with a certain frequency the
level set function.

• Requirements on the renormalization
algorithm are:
. Φ′ must preserve as much as posible

the 0 level set function (interface) Γ.
. Φ′ must be as regular as possible near

the interface.
. Φ′ must have a high slope near the

interface.
. Usually the signed distance function is

used, i.e.

Φ′(x) = sign(Φ(x)) min
y∈Γ
||y − x|| xΦ

Γ

Φ (renormalized)

Γ Γ
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Renormalization (cont.)

• Computing plainly the distance
function is O(NNΓ) where NΓ is the
number of points on the interface. This
scales typically∝ N1+(nd−1)/nd

(N
5/3 in 3D).

• Many variants are based in solving the
Eikonal equation

|∇Φ| = 1,

• As it is an hyperbolic equation it can
be solved by a marching technique.
The algorithm traverses the domain
with an advancing front starting from
the level set.
• However, it can develop caustics

(shocks), and rarefaction waves. So,
an entropy condition must be enforced.

caustic

expansion fan
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Renormalization (cont.)

• The Fast Marching algorithm
proposed by Sethian (Proc Nat
Acad Sci 93(4):1591-1595 (1996)) ,
is a fast (near optimal) algorithm
based on Dijkstra’s algorithm for
computing minimum distances in
graphs from a source set. (Note:
the original Dijkstra’s algorithm is
O(N2), not fast. The fast version
using a priority queue is due to
Fredman and Tarjan (ACM Journal
24(3):596-615, 1987), and the
complexity is
O(N log(|Q|)) ∼ O(N log(N))).

Q=advancing front F=far-away

Level set
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The Fast Marching algorithm

• We explain for the positive part Φ > 0.
Then the algorithm is reversed for Φ < 0.
• All nodes are in either: Q=advancing front,
F=far-away , I=frozen/inactive. The
advancing front sweeps the domain
starting at the level set and converts F
nodes to I .
• Initially Q = {nodes that are in contact

with the level set}. Their distance to the
interface is computed for each cut-cell.
The rest is in F =far-away.
• loop: Take the node X in Q closest to the

interface. Move it from Q→ I .
• Update all distances from neighbors to X

and move them from F → Q.
• Go to loop.
• Algorithm ends when Q = ∅. Q=advancing front F=far-away

Level set

I= frozen/inactive

X
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FastMarch: error and regularity of the distance function

• Numerical example shows
regularity of computed distance
function in a mesh of 100x100.
• We have a LS consisting of a circle
R = 0.2 inside a square of L = 1.
• Φ is shown along the x = 0.6 cut

of the geometry, also we show the
first and second derivatives.
• Φ deviates less than 10−3 from the

analytical distance.
• Small spikes are observed in the

second derivative.
• The error Φ− Φex shows the

discontinuity in the slope at the LS.
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FastMarch: implementation details

• Complexity is O(N)× the cost of finding the node in Q closest to the
level set.
• This can be implemented in a very efficient way with a priority queue

implemented in top of a heap. In this way finding the closest node is
O(log |Q|). So the total cost is

O(N log |Q|) ≤ O(N log(N
(nd−1)/nd)) = O(N logN

2/3) (in 3D).
• The standard C++ class priority_queue<> is not appropriate

because don’t give access to the elements in the queue.
• We implemented the heap structure on top of a vector<> and an
unordered_map<> (hash-table based) that tracks the Q-nodes in the
structure. The hash function used is very simple.
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FastMarch renorm: Efficiency

• The Fast Marching algorithm is
O(N log |Q|) where N is the
number of cells and |Q| the size of
the advancing front.
• Rates were evaluated in an Intel

i7-950@3.07 (Nehalem).
• Computing rate is practically

constant and even decreases with
high N .
• Since the rate for the NS-FVM

algorithm is >100 [Mcell/s],
renormalization at a frequency
greater than 1/200 steps would be
too expensive.
• Cost of renormalization step is

reduced with band renormalization
and parallelism (SMP).
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FastMarch renorm: band renormalization

• The renormalization algorithm
doesn’t need to cover the whole
domain. Only a band around the
level set (interface) is needed.
• The algorithm is modified simply:

set distance in far-away nodes to
d = dmax.
• Cost is proportional to the volume

of the band, i.e.:
Vband = Sband × 2dmax ∝ dmax.
• Low dmax reduces cost, but

increases the probability of forcing
a new renormalization, and thus
increasing the renormalization
frequency.

xΦold

Φ (renormalized w/o dmax)

dmax

dmax

Φ (renormalized w/ dmax)

width of renormalization 
band = 2 dmax
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FastMarch renorm: Parallelization

How to parallelize FastMarch? We can
do speculative parallelism that is while
processing a node X at the top of the
heap, we can process in parallel the
following node Y , speculating that
most of the time node Y will be far
from X and then can be processed
independently. This can be checked
afterwards, using time-stamps for
instance.

Level set
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FastMarch renorm: Parallelization (cont.)

• How much nodes can be
processed concurrently? It
turns out that the
simultaneity (number of
nodes that can be
processed simultaneously)
grows linearly with
refinement.
• Average simultaneity is

16x16: 11.358
32x32: 20.507
• Percentage of times

simultaneity is≥4:
16x16: 93.0%
32x32: 98.0%
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FastMarching: computational budget

• With band renormalization and SMP parallelization we expect a rate of
20 Mcell/s.
• That means that a 1283 mesh (2 Mcell) can be done in 100 ms.
• This is 7x times the time required for one time step (14 ms).
• Renormalization will be amortized if the renormalization frequency is more

than 1/20 time steps.
• Transfer of the data to and from the processor through the PCI Express 2.0

x 16 channel (∼4 GB/s transfer rate) is in the order of 10 ms.
• BTW: note that transfers from the CPU to/from the card are amortized if

they are performed each 1:10 steps or so. Such transfers can’t be done all
time steps.
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Conclusions

• The NS-FVM implementation reaches high computing rates in GPGPU
hardware (O(140 Mcell/s)).
• It can represent complex moving bodies without meshing.
• Surface representation of bodies can be made second order (not

implemented yet).
• Solution of the Poisson problem is currently a significant part of the

computing time. This is reduced by using the AGP preconditioner and
MOC-BFECC combination.
• MOC+BFECC has lower computing rates than QUICK (4x slower) but may

reach CFL=5 (versus CFL=0.5 for QUICK). So we get a speedup of 2.5x.
• Speedups may be higher if lower tolerances are required for the Poisson

stage (more Poisson iters).
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